LOYOLA COLLEGE (AUTONOMOUS), CHENNAI – 600 034

M.Sc. DEGREE EXAMINATION – MATHEMATICS

THIRD SEMESTER – NOVEMBER 2007

MT 3805 - ANALYTIC NUMBER THEORY

Date : 29/10/2007 Time : 9:00 - 12:00 Dept. No.

Max.: 100 Marks

AB26

ANSWER ALL QUESTIONS

a) Write a product formula for $\varphi(n)$. [OR] b) Prove that if $n \ge 1$ then $\sum_{n} \Lambda(d) = \log n$. (5) c) Prove that Euler's function $\varphi(n)$ has the following properties: i) $\phi(p^{\alpha}) = p^{\alpha} - p^{\alpha - i}$ for p and $\alpha \ge 1$. ii) $\phi(mn) = \phi(m)\phi(n)\phi\left(\frac{d}{\phi(d)}\right)$, where d = (m, n). iii) $\phi(mn) = \phi(m)\phi(n)$ if (m, n) = 1. iv) $\varphi(n)$ is even for $n \ge 3$. Moreover, if n has r distinct odd prime factors, then $2^r / \varphi(n)$. (4+5+2+4)[OR] d i) Prove that if $n \ge 1$ then $\sum_{n \le n} \Lambda(d) = \log n$. ii)Let the arithmetic function f be multiplicative. Then prove that f is completely multiplicative if, and only if $f^{-1}(n) = \mu(n)f(n)$ for all $n \ge 1$. (8+7)II a) Write a note on the test for divisibility by 3. [OR] b) Derive the average order of $\varphi(n)$. (5)c) State and prove Euler's summation formula. (15)[OR] d) If $x \ge 1$ prove that i) $\sum_{x \le x} \frac{1}{n} = \log x + C + O\left(\frac{1}{x}\right).$ ii) $\sum \frac{1}{n^s} = O(x^{1-s})$. (8+7)III a) Let $F_n = 2^{2^n} + 1$.Prove that F_5 is composite. [OR] b) State and prove Wilson's theorem. (5)

	 c) State and prove Chinese remainder theorem. Also write an application of Chinese remainder theorem. [OR] d) i) State and prove Lagrange's theorem for polynomial congruences model. 	f the (15) p.
	ii) Solve the congruence $25x \equiv 15 \pmod{120}$.	(10 + 5)
IV	 a) Prove that Legender's symbol is completely multiplicative. [OR] b) Find the value of (2 / n) where n is odd prime 	(5)
	c) State and prove Gauss' lemma.	(3)
	d) State and prove Euler's criterion.	(15)
v	a) Write an application of the reciprocity law.	
	b) Derive Euler's recursion formula for $p(n)$.	(5)
	c) State and prove Euler's pentagonal-number theorem. [OR]	
	d) State and prove Quadratic reciprocity law.	(15)
